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Renewables are a sizeable and growing part of the
US energy mix
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Renewables are a sizeable and growing part of the
US energy mix

22% of energy generation for
all sectors is currently
produced by non-fossil sources

Need to decarbonize 56.5
quadrillion BTUs of energy
production by 2050!
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You can track grid supply and demand in real time
in California

“?v‘ California ISO

Toddyls Outlook Demand Supply Emissions Prices

Current Demand trend Net demand trend Resource adequacy trend 7-dc:y resource adequucy trend

WWW.caiso.com/todays-outlook/



https://www.caiso.com/todays-outlook/

Overlaying supply and demand shows the need to
time-shift the energy
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Overlaying supply and demand shows the need to
time-shift the energy
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What are the different large-scale energy storage
technologies?

Mechanical/Thermal Electrochemical

Pumped hydropower Lithium-ion batteries

: Sodium-ion batteries
Compressed air

Flow batteries
Flywheels

Supercapacitors
Molten salt

Hydrogen



What are the different large-scale energy storage
technologies?

Mechanical/Thermal

Pumped hydropower

Compressed air



The oldie but goodie: pumped hydropower

theengineer.co.uk/content/in-depth/how-pumped-hydro-storage-can-help-save-the-planet



https://www.theengineer.co.uk/content/in-depth/how-pumped-hydro-storage-can-help-save-the-planet

Compressed air is also a cheap, but limited method for
storing energy

Airin Air out
Heat Management
" - ‘ Power out
¥
Salt Cavern
Compressed Air
Energy Storage

bl

https://www.greyb.com/blog/compressed-air-energy-storage-startups/



https://www.greyb.com/blog/compressed-air-energy-storage-startups/

Battery energy storage is projected to grow from
20 to 200 GW of capacity by 2050
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“Storage Futures Study”, National Renewable Energy Laboratory https://www.nrel.qov/docs/fy210sti/77449.pdf



https://www.nrel.gov/docs/fy21osti/77449.pdf

Electrochemical systems: a “battery” of choices

Electrochemical

Lithium-ion batteries
Sodium-ion batteries
Flow batteries
Supercapacitors

Hydrogen



Electrochemical systems: a “battery” of choices
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Electrochemical systems are comprised of two
electrodes, an electrolyte, and (sometimes) a separator
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Need unique reactions at each electrode to
create a thermodynamic difference

Electrolyte Electrolyte
Separator
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Need unique reactions at each electrode to
create a thermodynamic difference

Electrolyte Electrolyte

Separator

Need fast transport to and <+ Cat® A=

from the surface to reduce
mass transport losses




Need unique reactions at each electrode to
create a thermodynamic difference

Electrolyte Electrolyte

Separator

Need fast transport to and + Cat® Anr=

from the surface to reduce
mass transport losses

Need fast diffusion through the electrolyte and
separator to reduce ohmic losses



These three fundamental properties control
battery performance

Power = Current = Voltage

Energy = j Power x Time




The battery you have probably heard of:
the lithium-ion battery
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“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011



“Generation 2" electrolyte:
LiPF; with a mixture of ethylene carbonate / ethylmethyl carbonate

Electrolyte needs: high lithium diffusivity, good temperature
stability, high voltage window

Electrolyte

“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011



“Generation 2" electrolyte:
LiPF; with a mixture of ethylene carbonate / ethylmethyl carbonate

Electrolyte needs: high lithium diffusivity, good temperature
stability, high voltage window

Electrolyte can
breakdown to form a
resistive film known as
the “solid electrolyte
interphase” (SEI)

A4

“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011
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“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011
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Two most common:
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F Fe (iron)
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M Manganese
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Not very conductive!
Add: carbon, PVDF, etc.



SHORT TERM 2020-2025

“Critical Materials Assessment”, U.S. Department of Energy, July 2023
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Materials for lithium-ion batteries have high supply risk
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Thermal runaway can cause them to catch fire

Lithium | ) 3
dendrite melt

Temperature Cathode
flaws further increases decompose,
current decompose oxygen
Overcharging released
Anode
Cell crush | Bxpased

Cathod Anode
Separator and liquid electrolyte

Battery temperature increases

Stage 2: Heat accumulation and

Stage 1: The onset of overheating gas release process

“Materials for lithium-ion battery safety”, Science Advances, 2018
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While these events are somewhat infrequent,
they can still cause concern

Lithium Battery Fire Continues to Burn as

County Considers Moratorium
TIMES

of SAN DIEGO
Sept. 7th, 2024



What is very similar to lithium, but not quite lithium?

Sodium!



What is different about lithium and sodium?

Molecular size!

This impacts

— solvent-ion relationship changing diffusivity
— ion intercalation into electrode materials
— weight of the battery



How does that change the materials needed?

discharge

charge

e e

Cathode

“Advanced Anode Materials for Rechargeable Sodium-lon Batteries”, ACS Nano, 2023



Electrolyte can vary, but is quite similar to lithium
NaPF; or NaClO, with a mixture of
ethylene carbonate / diethyl carbonate or propylene carbonate

Conductivities are just slightly lower

Electrolyte

Separator

“Advanced Anode Materials for Rechargeable Sodium-lon Batteries”, ACS Nano, 2023



Sodium insertion N
into graphitic
carbon is poor!

"Hard” Carbon |
(similar to charcoal)
or graphene are
more often used

Anade

“Advanced Anode Materials for Rechargeable Sodium-lon Batteries”, ACS Nano, 2023



Prussian Blue Analogues
Mn[Fe(CN)¢l;

Layered Metal Oxides
MnO,
VO,
FeO,

Polyanion Compounds
V,(PO,);F
Fez(SO4)3

“Advanced Anode Materials for Rechargeable Sodium-lon Batteries”, ACS Nano, 2023



Materials for sodium ion batteries have low supply risk
and are abundant

SHORT TERM 2020-2025
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Sodium ion materials have been shown to be less prone

to thermal runaway
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Non-flow batteries are very power and energy dense
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“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011



For grid scale storage, energy density is not a huge deal
for system footprint

1 MW battery ~0.1 acres

1 MW Solar farm ~5 — 10 acres




Flow batteries store the electrolytes in external tanks
and pump them through the electrodes
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“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011
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“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011



There is a myriad of metal combinations for
aqueous flow batteries

Aqueous Chemistries
Posolyte

Vanadium FB
V4+ o /o
Supporting electrolyte: H,SO,, HNO;

Iron-Chromium FB
Fe2* & Fe3*

Supporting electrolyte: HCI

"Hybrid” Chemistries
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All-lron FB

Fe2* « Fe3+
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Zinc-Bromide FB
Br, « 2Br
Supporting electrolyte: HBr



Organic chemists can have fun too!
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Charged
polymeric
membrane

lon-
selective
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Electrode

source-load.

“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011
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Most conductive cation: H*

Most conductive anion: OH-
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How do we move the electrolyte through the electrodes?

“Electrical Energy Storage for the Grid: A Battery of Choices”, Science, 2011



There are multiple common flow field designs

(a)

Flow field Current collector
b

Bi-ploar plate
Membrane

Electrode u

Electrode frame
Flow field End plate

Flow field designs
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No-flow field Parallel flow field Single Serpentine flow field Interdigitated flow field

“Vanadium redox flow batteries: Flow field design and flow rate optimization”, Journal of Energy Storage, 2022
“Flow field structure design for redox flow battery: Developments and Prospects”, Journal of Energy Storage, 2024



Why are aqueous flow batteries safe?
They extinguish fire

VANAD | SRl =l ROLYTE
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Current flow battery limitations



Now that we know the main technologies, we can
compare them all with the universal metric:

Money



Future cost of most technologies is below the
US Department of Energy target
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Capital cost and lifetime vary significantly
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Other technologies that | didn’t have time for:
hydrogen and ultra-long duration storage
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Progress in California: 10 GW of storage added has
already helped prevent blackouts during heatwaves

Energy Storage in California by Type

s of April 15, 2024 ﬁos Angeles @imes
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wesicenta 106w [ California has new weapons to battle summer blackouts: Battery
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oty | g736mw [ 20%Pr
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- ‘A game changer’: How giant batteries are making California’s power grid
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Source: California Energy Commission



https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/california-energy-storage-system-survey

Thank you!

H Lawrence Livermore
National Laboratory
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